Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
This section describes how to specify the values of each model state at the time the simulation starts, and how to make instantaneous changes to state values at other times (e.g., due to importations)
compartments:
infection_stage: ["S", "I", "R"]
age_group: ["child", "adult"]
vaccination_status: ["unvaxxed", "vaxxed"]
initial_conditions:
method: defaultsubpop, population
large_province, 10000
small_province, 1000 compartments:
infection_stage: ["S", "I", "R"]
age_group: ["child", "adult"]
vaccination_status: ["unvaxxed", "vaxxed"]
initial_conditions:
method: SetInitialConditions
initial_conditions_file: initial_conditions.csv
allow_missing_subpops: TRUE
allow_missing_compartments: TRUEsubpop, population
large_province, 10000
small_province, 1000subpop, mc_name, amount
small_province, S_child_unvaxxed, 500
small_province, S_adult_unvaxxed, 500
large_province, S_child_unvaxxed, 5000
large_province, E_adult_unvaxxed, 5
large_province, S_adult_unvaxxed, "rest"name: test_simulation
start_date: 2021-06-01
compartments:
infection_stage: ["S", "I", "R"]
age_group: ["child", "adult"]
vaccination_status: ["unvaxxed", "vaxxed"]
initial_conditions:
method: FromFile
initial_conditions_file: initial_conditions_from_previous.csv
allow_missing_compartments: FALSE
allow_missing_subpops: FALSEsubpop, population
large_province, 10000
small_province, 1000mc_value_type, mc_infection_stage, mc_age, mc_vaccination_status, mc_name, small_province, large_province, date
....
prevalence, S, child, unvaxxed, 400, 900, 2021-06-01
prevalence, S, child, vaxxed, 0, 0, 2021-06-01
prevalence, I, child, unvaxxed, 5, 100, 2021-06-01
prevalence, I, child, vaxxed, 0, 0, 2021-06-01
prevalence, R, child, unvaxxed, 95, 4000, 2021-06-01
prevalence, R, child, vaxxed, 0, 0, 2021-06-01
prevalence, S, adult, unvaxxed, 50, 900, 2021-06-01
prevalence, S, adult, vaxxed, 400, 0, 2021-06-01
prevalence, I, adult, unvaxxed, 4, 100, 2021-06-01
prevalence, I, adult, vaxxed, 1, 0, 2021-06-01
prevalence, R, adult, unvaxxed, 75, 4000, 2021-06-01
prevalence, R, adult, vaxxed, 20, 0, 2021-06-01
...This page describes how users specify the names, sizes, and connectivities of the different subpopulations comprising the total population to be modeled
importation section (optional)importation::param_listreport sectionname: test_simulation
model_output_dirname: model_output
start_date: 2020-01-01
end_date: 2020-12-31
nslots: 100
subpop_setup:
geodata: model_input/geodata.csv
mobility: model_input/mobility.csvmobilitysubpop,population
10001,1000
20002,2000ori, dest, amount
10001, 20002, 3
20002, 10001, 30 3
3 0subpop_setup:
geodata: model_input/geodata.csv
mobility: model_input/mobility.csvsubpop, population
large_province, 10000
small_province, 1000ori, dest, amount
large_province, small_province, 100
small_province, large_province, 50subpop_setup:
...
geodata: minimalname: USA_covid19_2020
model_output_dirname: model_output
start_date: 2020-01-01
end_date: 2020-12-31
start_date_groundtruth: 2020-03-01
end_date_groundtruth: 2020-12-31
nslots: 1000This section describes how to specify the values of each model state at the time the simulation starts, and how to make instantaneous changes to state values at other times (e.g., due to importations)
This section describes how to specify the compartmental model of infectious disease transmission.
compartments)seir::transitions)seir::parameters)(seir::integration)name: sir
setup_name: minimal
start_date: 2020-01-31
end_date: 2020-05-31
nslots: 1
subpop_setup:
geodata: geodata_sample_1pop.csv
mobility: mobility_sample_1pop.csv
popnodes: population
nodenames: name
seeding:
method: FromFile
seeding_file: data/seeding_1pop.csv
compartments:
infection_stage: ["S", "I", "R"]
seir:
integration:
method: stochastic
dt: 1 / 10
parameters:
gamma:
value:
distribution: fixed
value: 1 / 5
Ro:
value:
distribution: uniform
low: 2
high: 3
transitions:
- source: ["S"]
destination: ["I"]
rate: ["Ro * gamma"]
proportional_to: [["S"],["I"]]
proportion_exponent: ["1","1"]
- source: ["I"]
destination: ["R"]
rate: ["gamma"]
proportional_to: ["I"]
proportion_exponent: ["1"]
interventions:
scenarios:
- None
- Lockdown
modifiers:
None:
method: SinglePeriodModifier
parameter: r0
period_start_date: 2020-04-01
period_end_date: 2020-05-15
value:
distribution: fixed
value: 0
settings:
Lockdown:
method: SinglePeriodModifier
parameter: r0
period_start_date: 2020-04-01
period_end_date: 2020-05-15
value:
distribution: fixed
value: 0.7> flepimop simulate sir_control.yml/> flepimop simulate -n 100 -j 4 -npi_scenario None -m euler --write_csv sir_control.ymlsubpop_setup:
census_year: 2010
state_level: TRUE
geodata: geodata_2019_statelevel.csv
mobility: mobility_2011-2015_statelevel.csv
modeled_states:
- CT
- MA
- ME
- NH
- RI
- VT
USPS subpop population
AL 01000 4876250
AK 02000 737068
AZ 04000 7050299
AR 05000 2999370
CA 06000 39283497
.....ori dest amount
01000 02000 198
01000 04000 292
01000 05000 570
01000 06000 1030
01000 08000 328
.....importation:
census_api_key: "fakeapikey00000"
travel_dispersion: 3
maximum_destinations: Inf
dest_type: state
dest_county: USA
aggregate_to: airport
cache_work: TRUE
update_case_data: TRUE
draw_travel_from_distribution: FALSE
print_progress: FALSE
travelers_threshold: 10000
airport_cluster_distance: 80
param_list:
incub_mean_log: log(5.89)
incub_sd_log: log(1.74)
inf_period_nohosp_mean: 15
inf_period_nohosp_sd: 5
inf_period_hosp_mean_log: 1.23
inf_period_hosp_sd_log: 0.79
p_report_source: [0.05, 0.25]
shift_incid_days: -10
delta: 1report:
data_settings:
pop_year: 2018
plot_settings:
plot_intervention: TRUE
formatting:
scenario_labels_short: ["UC", "S1"]
scenario_labels:
- Uncontrolled
- Scenario 1
scenario_colors: ["#D95F02", "#1B9E77"]
pdeath_labels: ["0.25% IFR", "0.5% IFR", "1% IFR"]
display_dates: ["2020-04-15", "2020-05-01", "2020-05-15", "2020-06-01", "2020-06-15"]
display_dates2: ["2020-04-15", "2020-05-15", "2020-06-15"]

seeding:
method: “NoSeeding”seeding:
method: "FromFile"
seeding_file: seeding_2pop.csvsubpop, date, amount, source_infection_stage, destination_infection_stage
small_province, 2020-02-01, 5, S, Esubpop, date, amount, source_infection_stage, source_vaccine_doses, source_age_group, destination_infection_stage, destination_vaccine_doses, destination_age_group
anytown, 1950-03-15, 452, S, 0dose, under5years, S, 1dose, under5years
anytown, 1950-03-16, 527, S, 0dose, 5_10years, S, 1dose, 5_10years
anytown, 1950-03-17, 1153, S, 0dose, over65years, S, 1dose, over65yearsseeding:
method: "PoissonDistributed"
lambda_file: seeding.csvseeding:
method: "NegativeBinomialDistributed"
lambda_file: seeding.csvcompartments:
infection_stage: ["S", "I", "R"]
seir:
transitions:
# infection
- source: [S]
destination: [I]
proportional_to: [[S], [I]]
rate: [beta]
proportion_exponent: 1
# recovery
- source: [I]
destination: [R]
proportional_to: [[I]]
rate: [gamma]
proportion_exponent: 1
parameters:
beta:
value: 0.2
gamma:
value: 0.1
outcomes:
settings:
method: delayframe
outcomes:
incidC:
source:
incidence:
infection_stage: "I"
probability:
value: 0.5
delay:
value: 2
incidH:
source:
incidence:
infection_stage: "I"
probability:
value: 0.01
delay:
value: 21 // Some code compartments:
infection_state: ["S", "I", "R"]
age_group: ["child", "adult"]
vaccination_status: ["unvaxxed", "vaxxed"]
outcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
...
incidH_adult:
source:
incidence:
infection_state: "I"
age_group: "adult"
...
incidH_all:
source:
incidence:
infection_state: "I"
... compartments:
infection_state: ["S", "I", "R"]
age_group: ["child", "adult"]
vaccination_status: ["unvaxxed", "vaxxed"]
outcomes:
incidC:
source:
prevalence:
infection_state: "I"
...outcomes:
incidC:
source:
prevalence:
infection_state: "I"
...
incidT:
source: incidC
...outcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
probability:
value: 0.05
modifier_key: hosp_rate
incidH_adult:
source:
incidence:
infection_state: "I"
age_group: "adult"
probability:
value: 0.01
modifier_key: hosp_rateoutcomes:
incidC:
source:
prevalence:
infection_state: "I"
probability:
value:
distribution: uniform
low:
value: 0.2
high:
value: 0.3
intervention_param_name: "case_detect_rate"outcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
probability:
value: 0.05
delay:
value: 7outcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
probability:
value: 0.05
delay:
value:
distribution: truncnorm
mean: 7
sd: 2
a: 0
b: Infoutcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
probability:
value: 0.05
delay:
value: 7
duration:
value: 3outcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
probability:
value: 0.05
delay:
value: 7
duration:
value: 3
name: "hosp_child_curr"outcomes:
incidH_child:
source:
incidence:
infection_state: "I"
age_group: "child"
probability: 0.05
delay: 6
duration:
value: 14
name: "hosp_child_curr"
incidH_adult:
source:
incidence:
infection_state: "I"
age_group: "adult"
probability: 0.01
delay: 8
duration:
value: 7
name: "hosp_adult_curr"
incidH_total:
sum: ["incidH_child","incidH_adult"]
hosp_curr_total:
sum: ["hosp_child_curr","hosp_adult_curr"]// Some code
compartments:
infection_stage: ["S", "I", "R"]
seir:
transitions:
# infection
- source: [S]
destination: [I]
proportional_to: [[S], [I]]
rate: [beta]
proportion_exponent: 1
# recovery
- source: [I]
destination: [R]
proportional_to: [[I]]
rate: [gamma]
proportion_exponent: 1
parameters:
beta: 0.1
gamma: 0.2
integration:
method: rk4
dt: 1.00compartments:
infection_stage: ["S", "I", "R"] compartments:
infection_stage: ["S", "I", "R"]
vaccination_status: ["unvaccinated", "vaccinated"]infection_stage, vaccination_status, compartment_name
S, unvaccinated, S_unvaccinated
I, unvaccinated, I_unvaccinated
R, unvaccinated, R_unvaccinated
S, vaccinated, S_vaccinated
I, vaccinated, I_vaccinated
R, vaccinated, R_vaccinated compartments:
infection_stage: ["S", "I"]
age_group: ["child", "adult"]
vaccination_status: ["unvaccinated", "1dose", "2dose"]infection_stage, age_group, vaccination_status, compartment_name
S, child, unvaccinated, S_child_unvaccinated
I, child, unvaccinated, I_child_unvaccinated
S, adult, unvaccinated, S_adult_unvaccinated
I, adult, unvaccinated, I_adult_unvaccinated
S, child, 1dose, S_child_1dose
I, child, 1dose, I_child_1dose
S, adult, 1dose, S_adult_1dose
I, adult, 1dose, I_adult_1dose
S, child, 2dose, S_child_2dose
I, child, 2dose, I_child_2dose
S, adult, 2dose, S_adult_2dose
I, adult, 2dose, I_adult_2dosecompartments:
overall_state: ["S_child", "I_child", "S_adult_unvaccinated", "I_adult_unvaccinated", "S_adult_1dose", "I_adult_1dose", "S_adult_2dose", "I_adult_2dose"][S,unvaccinated][I,unvaccinated]5beta[[[S,unvaccinated]], [[I,unvaccinated], [I, vaccinated]]][[S_unvaccinated], [I_unvaccinated, I_vaccinated]][S_unvaccinated, I_unvaccinated + I_vaccinated][1, 0.9][1, alpha]source: [S, unvaccinated]
destination: [I, unvaccinated]
proportional_to: [[[S,unvaccinated]], [[I,unvaccinated], [I,vaccinated]]]
rate: [5]
proportion_exponent: [1, 0.9][[S], [unvaccinated,vaccinated]][[I], [unvaccinated,vaccinated]][[I], [vaccinated,unvaccinated]]rate: [[3], [0.6,0.5]][
[[S,unvaccinated], [S,vaccinated]],
[[I,unvaccinated],[I, vaccinated]], [[I,unvaccinated],[I, vaccinated]]
][
[S,unvaccinated],
[[I,unvaccinated],[I, vaccinated]]
]
[
[S,vaccinated],
[[I,unvaccinated],[I, vaccinated]]
][
[[S,unvaccinated], [S,vaccinated]],
[[I,unvaccinated],[I, vaccinated]], [[I, vaccinated]]
][[1,1], [0.9,0.8]]seir:
transitions:
source: [[S],[unvaccinated,vaccinated]]
destination: [[I],[unvaccinated,vaccinated]]
proportional_to: [
[[S,unvaccinated], [S,vaccinated]],
[[I,unvaccinated],[I, vaccinated]], [[I, vaccinated]]
]
rate: [[3], [0.6,0.5]]
proportion_exponent: [[1,1], [0.9,0.8]]seir:
transitions:
- source: [S,unvaccinated]
destination: [I,unvaccinated]
proportional_to: [[[S,unvaccinated]], [[I,unvaccinated],[I, vaccinated]]]
proportion_exponent: [1 * 0.9]
rate: [3*0.6]
- source: [S,vaccinated]
destination: [I,vaccinated]
proportional_to: [[[S,vaccinated]], [[I, vaccinated]]]
proportion_exponent: [1 * 0.8]
rate: [3*0.5]seir:
parameters:
beta:
value: 0.1
gamma:
value: 0.2compartments:
infection_state: ["S", "I", "R"]
seir:
transitions:
# infection
- source: [S]
destination: [I]
proportional_to: [[S], [I]]
rate: [beta]
proportion_exponent: 1
# recovery
- source: [I]
destination: [R]
proportional_to: [[I]]
rate: [gamma]
proportion_exponent: [1,1]
parameters:
beta:
value: 0.1
gamma:
value: 0.2compartments:
infection_stage: ["S", "I", "R"]
vaccination_status: ["unvaccinated", "vaccinated"]
seir:
transitions:
source: [[S],[unvaccinated,vaccinated]]
destination: [[I],[unvaccinated,vaccinated]]
proportional_to: [
[[S,unvaccinated], [S,vaccinated]],
[[I,unvaccinated],[I, vaccinated]], [[I, vaccinated]]
]
rate: [[beta], [theta_u,theta_v]]
proportion_exponent: [[1,1], [alpha_u,alpha_v]]
parameters:
beta:
value: 0.1
theta_u:
value: 0.6
theta_v:
value: 0.5
alpha_u:
value: 0.9
alpha_v:
value: 0.8seir:
parameters:
beta:
value:
distribution: fixed
value: 0.1
gamma:
value:
distribution: lognorm
logmean: -1.6
logsd: 0.2date, small_province, large_province
2022-01-01, 1.5, 1.3
.....
2022-05-01, 0.5, 0.7
....
2022-12-31, 1.5, 1.3compartments:
infection_stage: ["S", "I", "R"]
seir:
transitions:
# infection
- source: [S]
destination: [I]
proportional_to: [[S], [I]]
rate: [beta*theta]
proportion_exponent: 1
# recovery
- source: [I]
destination: [R]
proportional_to: [[I]]
rate: [gamma]
proportion_exponent: 1
parameters:
beta:
value: 0.1
gamma:
value: 0.2
theta:
timeseries: data/seasonal_transmission.csvseir:
integration:
method: rk4
dt: 1.00seir:
integration:
method: stochastic
dt: 0.1This section describes how to specify modifications to any of the parameters of the transmission model or observational model during certain time periods.
This page describes the configuration schema for specifying distributions
seir_modifiers:
scenarios:
-NameOfIntervention1
-NameofIntervention2
modifiers:
NameOfIntervention1:
...
NameOfIntervention2:
...seir_modifiers:
scenarios:
-SchoolClosures
-AllNPIs
modifiers:
SchoolClosures:
method:SinglePeriodModifier
...
CaseIsolation:
method:SinglePeriodModifier
...
Masking:
method:SinglePeriodModifier
....
AllNPIs
method: StackedModifier
modifiers: ["SchoolClosures","CaseIsolation","Masking"]seir_modifiers:
scenarios:
-SchoolClosures
-AllNPIsoutcome_modifiers
scenarios:
-BaselineTesting
-TestShortageseir_modifiers:
modifiers:
lockdown:
method: SinglePeriodModifier
parameter: beta
period_start_date: 2020-03-15
period_end_date: 2020-05-01
subpop: ['06000', '11000']
value: 0.7outcome_modifiers:
modifiers:
enhanced_testing:
method: SinglePeriodModifier
parameter: incidC::probability
period_start_date: 2020-03-15
period_end_date: 2020-05-01
subpop: ['06000', '11000']
value: -1.0new_parameter_value = old_parameter_value * (1 - value)school_year:
method: MultiPeriodModifier
parameter: beta
groups:
- subpop: ["25000"]
periods:
- start_date: 2021-09-09
end_date: 2021-12-23
- start_date: 2022-01-04
end_date: 2022-06-22
- subpop: ["12000"]
periods:
- start_date: 2021-08-10
end_date: 2021-12-17
- start_date: 2022-01-04
end_date: 2022-05-27
value: -0.3new_parameter_value = old_parameter_value * (1 - value)seir_modifiers:
modifiers:
social_distancing:
method: SinglePeriodModifier
parameter: beta
period_start_date: 2020-03-15
period_end_date: 2020-06-30
subpop: ['all']
value: 0.6
fatigue:
method: ModifierModifier
baseline_scenario: social_distancing
parameter: beta
period_start_date: 2020-05-01
period_end_date: 2020-06-30
subpop: ['large_province']
value: 0.5seir_modifiers:
modifiers:
social_distancing_initial:
method: SinglePeriodModifier
parameter: beta
period_start_date: 2020-03-15
period_end_date: 2020-04-31
subpop: ['all']
value: 0.6
social_distancing_fatigue_sp:
method: SinglePeriodModifier
parameter: beta
period_start_date: 2020-05-01
period_end_date: 2020-06-30
subpop: ['small_province']
value: 0.6
social_distancing_fatigue_lp:
method: SinglePeriodModifier
parameter: beta
period_start_date: 2020-05-01
period_end_date: 2020-06-30
subpop: ['large_province']
value: 0.3new_intervention_value = old_intervention_value * (1 - value)new_parameter_value = original_parameter_value * (1 - baseline_intervention_value * (1 - value) )seir_modifiers:
scenarios:
-SchoolClosures
-AllNPIs
modifiers:
SchoolClosures:
method:SinglePeriodModifier
parameter: beta
period_start_date: 2020-03-15
period_end_date: 2020-05-01
subpop: 'all'
value: 0.7
CaseIsolation:
method:SinglePeriodModifier
parameter: gamma
period_start_date: 2020-04-01
period_end_date: 2020-05-01
subpop: 'all'
value: -1.0
Masking:
method:SinglePeriodModifier
parameter: beta
period_start_date: 2020-04-15
period_end_date: 2020-05-01
subpop: 'all'
value: 0.5
AllNPIs
method: StackedModifier
modifiers: ["SchoolClosures","CaseIsolation","Masking"]outcome_modifiers:
scenarios:
- ReducedTesting
- AllDelays
modifiers:
DelayedTesting
method:SinglePeriodModifier
parameter: incidC::probability
period_start_date: 2020-03-15
period_end_date: 2020-05-01
subpop: 'all'
value: 0.5
DelayedHosp
method:SinglePeriodModifier
parameter: incidD::delay
period_start_date: 2020-04-01
period_end_date: 2020-05-01
subpop: 'all'
value: -1.0
LongerHospStay
method:SinglePeriodModifier
parameter: incidH::duration
period_start_date: 2020-04-15
period_end_date: 2020-05-01
subpop: 'all'
value: -0.5seir_modifiers:
modifiers:
lockdown:
method: SinglePeriodModifier
parameter: beta
period_start_date: 2020-03-15
period_end_date: 2020-05-01
subpop: 'all'
subpop_groups: [['NS','NB','PE','NF'],['MB','SK','AB'],['NV','NW','YK']]
value:
distribution: uniform
low: 0.3
high: 0.7